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Transverse flow driven by walls oscillating 
along their normal 

By W. M. SASLOW 
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(Received 10 October 1979) 

When a pipe, connected to reservoirs a t  both ends, is subjected to an oscillating 
compression and expansion, fluid is alternately squeezed into and out of the reservoirs, 
causing a considerable amount of dissipation. This and two other related geometries 
(involving a symmetrical channel, and a pair of circular disks) are analysed for their 
flow patterns and energy dissipation, as a function of frequency. It is found that, 
under certain circumstances, the impedance due to  transverse flow can greatly exceed 
the acoustical impedance (due to longitudinal flow). 

1. Introduction 
The calculations we shall describe came about as a result of an examination of the 

energy losses caused by viscous fluid flow in the active volume of a condenser micro- 
phone. Because energy loss adversely affects their efficiency, condenser microphones 
are designed to minimize this effect. Therefore, in the context of condenser micro- 
phones, our calculation can be employed to indicate when such losses might present 
a problem. However, the problem is so general, and the solution is so straightforward, 
that  we believe our results t o  be of broader interest. 

A condenser microphone or transmitter consists of a tightly stretched, electrically 
conducting, diaphragm which is placed a small distance h above a metallic backplate 
(Wente 1917). I n  the transmitter mode, a time-varying voltage difference between the 
diaphragm and backplate causes a time-varying force to  act on the diaphragm, 
bringing it into motion, and thus generating sound in the fluid in which it is immersed. 
Indeed, this is the same principle employed in an electrostatic speaker. I n  the micro- 
phone mode, incident sound causes the diaphragm to move, thus changing the capaci- 
tance of the diaphragm-backplate system, and producing an electric current to  or 
from a voltage source as the system attempts to  maintain a fixed voltage difference 
between the diaphragm and the backplate. Viscous loss inevitably occurs when the 
fluid is forced about by the motion ofthe diaphragm. In a t  least one type of geometry, 
this viscous loss can be quite significant. It can occur if the backplate is not flat, but 
rather has holes or annular ridges cut in it, and the characteristic contact distance 
(the square root of the contact area) between diaphragm and backplate is much larger 
than their separation h. In this case, when the diaphragm moves toward the backplate, 
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fluid is squeezed out of the near region, into the regions further from the diaphragm, 
and viscous dissipation occurs. If the viscous penetration depth 6 is small compared 
with h, the fluid flow will involve energy losses primarily near the diaphragm and near 
the backplates; on the other hand, if 6 B h, one has a slowly modulated form of 
Poiseuille flow, in which the losses occur throughout the volume of the system. 

We will model this problem for three geometries. First, we will consider two- 
dimensional flow through a symmetrical channel whose walls are uniformly oscillating 
a t  an angular frequency w ;  secondly, the separation between two circular plates will 
be varied; and thirdly, the radius of a pipe will be varied. In each case it will be 
assumed that there is a fluid reservoir a t  pressurep,, so that the fluid has room to move, 
and thus behaves as if it is incompressible. (This requires that the characteristic 
wavelength A = %c/w of sound be large compared to the characteristic channel 
length. Here c is the sound velocity.) In  addition, we will consider only small- 
amplitude oscillations, so that the equations may be linearized. 

Some work has been done which bears on the present paper. Secomb (1978) has 
studied small-amplitude oscillations in the channel and pipe geometries, with an 
interest in arterial blood flow. The pipe geometry has also been studied, for monotonic 
compression and expansion, including finite amplitude effects, by Uchida & Aoki 
(1977); they also had an interest in blood flow. The disk geometry, with one disk 
fixed, has been studied also. First, slow compression (or expansion) is treated in 
Landau & Liftshitz (1959)) being attributed to Reynolds. In  addition, Terrill (1969) 
has treated the case where one disk oscillates, including some finite-amplitude effects; 
his interest was in problems associated with lubrication. None of these papers consider 
either power loss or acoustic impedance, which is the primary concern of the present 
paper. 

2. Flow solutions 
We will look for solutions to the linearized mass and momentum conservation 

equations, considering the fluid to be incompressible. Thus we write the fluid velocity 
as 

where 
v = V 1 f  v,, (1) 

v, = vq5, vaq5 = 0 (2) 

describes the longitudinal part of the solution, and 

describes the transverse part of the solution. (In (3) we have taken v, to vary as 
e-gwt. ) 

Rather than derive in detail the solutions for the various geometries, we will merely 
state what the solutions are, considering the geometries in succession. 

(a) Symmetrical channel 
Consider a channel of height 2a and length 21. We will assume symmetrical flow about 
its centre, so that under compression of the plates, fluid moves to the right or left 
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according to whether it is to- the right or left of the midpoint of the plates. We will also 
impose the boundary condition that, a t  the plate boundaries, the fluid displacement 5 
is given by 

( 4 )  

where 6 < a, and the & denotee whether we are at the upper or lower plate. Since 
v = ag/at, this becomes the condition that 

( 5 )  

F(x, y = + a )  = + J t e -  .. i w t  , 

v(2, y = & a )  = 2 j( - i w t )  e+t. 

The solution to the differential equations, subject to the boundary condition given 
by ( 5 ) ,  is (with vo = - iwteciwt) 

v, = Ax( 1 - cos aylcos aa),  ( 6 )  

where 
vy = - A ( y  - 01-l sin aylcosaa), 

A = vo(a-l tan aa - a)-l. 

Since a is a complex number, these equations hide some of the complexity in this 
problem, but it is helpful that they have so compact a form. In  the static limit (w -+ 0 
but finite vo), we have 

v, + v0[3x(y2 - a2)/2a3], (9) 

vv -+ v0[y(3a2- y2)/2a3]. (10) 

Note that ( 9 )  and (10) agree with $ 4  of Secomb (1978), when the different notations 
are accounted for. 

(b) Circular disks 

In this case the vertical disk separation is 2a and the disk radius is 1. The solution to 
the differential equations, subject to the boundary conditions that vJr ,  y = & a )  = + vo 
and v,(r, y = + a )  = 0, is 

v, = Br(1- cosay/cosaa), ( 1 1 )  

where 
vY = - 2B(y - sin ~ Y / C O S  EU), 

B = &v0(a-l tan aa - u)--l. 

In the static limit we have 

v, -+ v0[3r(y2 - a2)/4a3], 

vg + vo[y(3a2 - y2)/2a3]. (151 

(c) Pipe of oscillating radius 

In this case let the radius of the tube be given by a, and let the tube have length 
21 along the z direction. The solution to the differential equations, subject to  the 
boundary conditions v,(z, r = a )  = vo and v,(z, r = a )  = 0 is given in terms of Bessel 
functions as 

vz = CZ[l - J o ( ~ ~ ) / J o ( ~ ) l ,  ( 1 6 )  

v, = - +C[r - 2a-lJl(ar)/J0(aa)], (17) 
16-2 
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where 

In the static limit we have 

C = wo[a-lJ,(aa)/Jo(aa) - 4a]. 

w, -+ w0[4z(r2- a2)/as], 

w, --f wo[r(2a2-r2)/a3]. (20 )  

Note that (15) and (16 )  agree with the appendix of Secomb (1978), when the different 
notations are accounted for. 

3. Stress tensor 

We will continue to develop the solutions to each of the three problems by treating 
their various aspects in parallel. In this section we will compute the appropriate 
stress tensors and pressures. We will employ the linearized Navier-Stokes equation, 

- iwpv  = -vp+yv2v = v.0, (21 )  

ui* = -p8,*+y(a,vj+ajwi). (22 )  

where 0 is the stress tensor, given (for V . v z 0) by 

Knowledge of v and ( 2 1 )  will permit us to deducep; knowledge of p, v and ( 2 2 )  gives u. 
We will determine p by solving 

vp = iwpv + yv2v. (23 )  

(a)  Symmetrical channel 
Here we must soIve 

a,p = i ~ p ~ ,  + ~ ( a :  + a;) wz, 
ayp = i ~ p ~ ,  + ~ ( a :  + a;) wy. 

Placing ( 6 )  into (24 )  we find that 

axp = iwpAx( 1 - cos ay/cos aa) + TAxa2 cos ccylcos OUI: 

= i ~ p A x ,  

p = @JJpAx2+f (Y, t ) ,  

wheref(y, t )  must be determined. Placing (7) into (25 )  yieIds 

a,p = - iwpA(y - a-1 sin aylcos .a) - yAa sin aylcos aa 

= - i ~ p A y ,  

p = - @~pAy2 + g(x, t )  . (27 )  

p = p o + & i ~ ~ A ( ~ 2 - E 2 - y 2 ) .  (28 )  

Clearly, the solution to (26 )  and (27 ) ,  subject t o p  = po for (x, y) = (1, 0), is given by 

For completeness, we must rtlso compute cruv. It is given by 

u,, = -p  -t 27 a, vv 
= -p,, - @wpA(x2 - la - y2) - 2 y A (  1 - COB aylcos aa). (29 )  
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The rate of work dP being done on the system, per unit area dA, is given by 

dP/dA = ~ u u ~ u .  (30) 

This must be integrated over both top and bottom surfaces. Since it is the time- 
averaged quantity in which we shall be most interested, we must take only the real 
parts in computing auu and vy. To maintain the parallelism, we shall reserve this 
calculation for the next section. 

( b )  Circular disks 

Here we will merely state our final results. The pressure, obtained from solving (23), 
and subject t o p  = p, for ( r ,  y) = (1 ,  0) ,  is 

p = po  + #wpB(r2 - l2 - 2y2). (31) 

The rate of work being done on the system, per unit area, is given by 

dP/dA = u ~ ~ v ~ ,  
and auu is given by 

avu = -1) + 27 auvu 

= -po - @wpB(r2 - l2 - 2y2) - 4yB( 1 - cos ay/coa aa). (33) 

Again, we defer the calculation of the power input until the next section. 

(c)  Pipe 
Again we merely state our final results. The pressure p, obtained from solving (23), 
and subject to p = p, for (2,  r )  = (1, 0) ,  is 

(34) 

Note that (34) agrees with the result of Uchida & Aoki (1977), in the limit of small 
radial velocity. The rate of work being done on the system, per unit area, is given by 

p = po + +iwpC(z2 - t2 - &+). 

dP/dA = G,V,, (35) 

a, = -1) + 27 art+. 
From (34) and (17) we have 

a;, = -po- )iwpC(z2-l2-r2)-yC[1 - 2Ji(ar)/J,(aa)], 

aJl/ax + Jl /x  = J,, 

(37) 

where J;(ar) is the derivative of Jl(ar) with respect to its argument. From 

where x is the argument of J1 and J,, we may rewrite (37) as 

a,.,. = - p ,  - +iwpC(z2 - Z2 - $r2) - yC{ 1 - 2[J0(ar) - a-lr-lJl(ar)]/J,(aa)}. (38) 

Again we defer the calculation of the power input until the next section. 
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4. Power input 
In  what follows, we will compute the power input, a quantity which is second order 

in the velocity. Because our first-order solution exactly matches the boundary condition 
of a moving wall, the boundary condition on the second-order solution v@) is that 
vCz) = 0 on the wall. (This is true for all the higher-order solutions.) Hence it cannot 
contribute to second order, since the product of the zeroth-order stress tensor and d2) 
then gives zero on the wall, and the product of the second-order stress tensor and 
the zeroth-order velocity v@) is also zero on the wall, since vCo) = 0 everywhere. Only the 
product of the first-order stress tensor and v(l) needs to be considered in computing the 
power input to second order. We also note that our linearized analysis will be valid as 
long as the amplitude 6 is much less than the viscous penetration depth S (i.e., 5 < 6). 
For (2 S, gradients of the first-order (i.e., linearized) solutions, which appear as 
source terms in the equation for the second-order solutions, can cause the second-order 
solutions to be comparable in magnitude to the first-order solutions. 

(a )  Symmetrical channel 

As a start, let us first consider the power needed to compress the channel as w --f 0. 
In that case, a -+ 0, so that A -+ 3vo/a2a3, and thus, for y = a, 

( 3 9 )  

Since the compresBion is uniform, we can find the power provided by each surface 
simply by multiplying the force on each surface by the area of each surface. For this 
geometry we will work with the force of compression f per unit length dL along the z 
axis. Thus, neglecting the a2 term in (39), 

“yu+ -P , - $(rvo/a3) (z2-P-a2).  

f = j’ rUu dz = - 21[p0 - rvo  12/aS], ( 4 0 )  

( 4 1 )  

Since vo is negative in compression, this is indeed a positive quantity. Besides the povo 
term, which would not appear if the channel were immersed in fluid on all sides (due 
to compensating stresses on the outer walls of the channel), there is an additional 
viscous term. (Properly, the a2 term in ( 3 9 )  cannot be considered to be given accurately, 
since the fluid flow pattern is known only if 1 % a.) 

Let us now compute the finite frequency power input. For y = a, ( 2 9 )  and ( 8 )  give 

-1 

dP/dL = Zfvo = - 4 p , ~ , 1 + 4 ~ ~ ~ 1 3 / ~ ~ .  

(iuu w -p,  - &iopw,(a-l tan a a - a)-l (x2- P ) .  ( 4 2 )  

To evaluate the time-average of the power per unit area dP/dA, we note, for an 
oscillation of two complex quantities A and B, each of period T, that 

T-l/oFRe(A) xRe(B)dt = +Re(AB*). 

Hence (30 ) ,  becomes where A denotes the time-average of A,  
-- 
dPldA = c ~ ~ ~ v ~  = +Re (uuuv$) 

= ~wpIvo12(z2-12)Im [(a-ltanaa-a)-l], 

( 4 3 )  

( 4 4 )  
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where a = ( iwp/r)*  = (1  + i ) / 6 ,  with 6 3 (2y/wp)* being the viscous penetration depth. 
Integrating from - 1  to + 1,  and including top and bottom, we have 

dP/dL = -~wp~~~~21~Im[(a-~tanaa-a)-~], (45) 

which agrees with the second term of (41) as w + 0. An explicit expression for the 
bracketed term in (45) can be obtained after some tedious algebra, but it provides 
little illumination. In  the high-frequency limit (by which we mean that lala 9 1, or 
a % 6, so that potential flow dominates), it takes the form 

(a-1 tan a a - a)-1 + - a-l[ 1 + ( 1  + i) 6/2a], 
so that 

dP/dL -+ @pI~,l~136/ /a~ = #(2?pw)* ~ V ~ ] ~ P / U ~ .  (46) 

This differs from the a 6 limit (of (41)) by a factor of (al66). Hence the time-averaged 
power dissipation can be expected to slowly rise as the frequency increases, provided 
that loo/ is independent of frequency. On the other hand, if the amplitude 6 is inde- 
pendent of frequency, then lwol varies as w ,  and the time-averaged power dissipation 
rises much more rapidly, starting as w2 at low w ,  and going as w i  at high w .  

( b )  Circular disks 
For y = a and r ,  1 % a, (33) and (13) give 

vYY z -po  - )iwpv,(a-l tan a a - a)-l (r2 - P). (47) 

Integrating this over the area of a disk gives 

(48) 
n 

F, = J: vvY( 2nr dr) = - np0P + i - wpvo P(a-1 tan a a - a)-1. 8 

In  the w -+ 0 limit this gives 

In  the high-frequency limit (48) gives (neglecting the p0 term) 

F, + - &inwp~,Z~(u-~ + i6/2a2), 

= 2 Re (3’’) Re (vo) = Re (F,v:) 

= An( 27pw)) 1 vo 1 214/u2. 

More generally, we have, for finite w ,  that 

P = Re(F,v,*) = -&nwpIvo12141m [ (a -1 tana~-a) -~] .  (53) 

( c )  Pipe 

For r = a and z ,  2 9 a, (18) and (38) give 

(Tn w -po - ~iwpvo[a-1J1(ouz)/J0(aa) - *a]-l(z2- P). (54) 
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Integrating this over the area of the pipe gives 

F, = 1' ar,.27radz 
- I  

In  the w --f 0 limit this gives 

In  the high-frequency limit, where a 9 6, ( 5 5 )  requires that we employ, for I z [  -+ co 
and z = IzI ei$ with - $71 < q5 < in, 

J,(z) 4 ( 2 / 7 r Z ) *  cos [ z  - &7r(y + *)I. 

~,(aa)  --f ( 4 2  Se-tin/7ra) *cos [2/6- &r(n + 8) + ia/6I 

(57) 

Here we have z = aa = ( 4 2  a /S )  edin = (a/S) (1  + i ) ,  so 

-+ ( 4 2  S/4na)+ exp { - i[a/S - &nn] + a/&}. (58 )  
Thus, for a 9 6, 

[a-lJl(aa)/Jo(aa) - ia1-1 M (2/a)  [2/2 (&/a) e f i n  - 11-1 

x - (2/a)  (1  + iS/a). (59) 

Hence, neglecting the po term, in the high-frequency limit ( 5 5 )  gives 

F, -+ - 3nwpv0Z3( 1 + iS/a), 

= Re (8) Re (wo) = 4 Re (Y!vg) 

More generally we have, for finite w ,  that  

5. Acoustic impedance 
Because this work was originally motivated by a problem in acoustics, we will 

take our calculations one step further, and compute the average acoustic impedance 

2 = p / v .  (63) 

Here p is the average force per unit area, excluding the background pressure, and v 
is the velocity of the surface. A large value of z indicates a surface that is hard to move. 
Note that in what follows, we must employ z = -p /v ,  since for our geometries a positive 
w corresponds to a decrease in p ,  and we must have Re ( z )  > 0 for energy absorption. 

We first consider the low-frequency values. For the symmetrical channel, (40) gives 

= y12/a3. 

For the circular disks, (49) gives 

For the pipe, (56) gives 
z = $q12/a3. 

z = ?@/a3. 
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P C  7 @/a3 

1.8 x lo2 Air (STP) 4.0 x 10' 1.8 x 10-4 
Water (STP) 1.5 x 105 1.0 x 10-2 1.0 x 104 
3He (20 mK, P = 0)t  1.5 x 103 4.6 x 10-3 4.6 x 103 

Here 1 = 1 cm, a = lo-* cm. 
t Wheatley 1975. 

TABLE 1 

V I P  8 = ( 2 9 / W P ) +  wp12/a up12 6/a2 

Air (STP) 1.5 x lo-' 2.2 x 10-3 7.5 x 103 1.7 x 103 
Water (STP) 1.0 x 10-2 5.6 x 10-4 6.3 x lo6 3-5 x 105 
3He (20 mK, P = 0)t  5.6 x lo-' 1.3 x 10-3 5.2 x 105 6.7 x 104 

Here w = 2n x 104 s-1, I = 1 cm, a = 10 em. 
t Wheatley 1975. 

TABLE 2 

For air a t  room temperature and atmosphere pressure (STP) we have 11 = 1.8 x 
cm, r,d2/a3 = 180 cgs. This is to  be compared 

t o  pc, the usual bulk acoustic impedance, which for air at STP is about 40  cgs. I n  
other words, if the fluid being compressed is confined to  a narrow region, it has a 
large impedance, or resistance, to  compression, simply due to viscous effects. This is 
well known in the study of lubrication. The values for water a t  STP, and for liquid 
3He a t  20 x 

We now consider the high-frequency limit, where a B 6 = (2y/wp)*. As a standard 
frequency we will take lo4 Hz, a not uncommon acoustic frequency, although it is 
considerably higher than what one could confront in a mechanical system (such as 
a pump). The acoustic impedance for the symmetrical channel becomes, from (42) 
averaged from - 1 to + I, 

(67) 

cgs, so that if 1 = 1 cm and a = 

K and zero pressure are given in table 1, for the same geometry. 

z = - i+wp(P/a) (1  -t- idlea). 

The imaginary part is an inertial effect due to  potential flow induced in the fluid. 
The real part corresponds to  actual losses in the system. For a circular disk, from (51) 
we have 

z = - i+op(P/a) (1 + iS/2a).  

z = - i$wp(12/a) ( I  + isla). 

(68) 

For a pipe, from (60) we have 

(69) 

Representative values of wp12/a and wpl26/a2 are given in the last two columns of 
table 2. 

Comparing pc and wp126/a2 for liquid 3He at 20 mK, 'P = 0, and lo4 Hz, we see 
that the latter quantity, due to  viscous loss, is forty times as large as the former 
quantity, due to  acoustic transmission. Clearly, under such circumstances it would be 
necessary to  include the viscous contribution to  the total impedance. Probably it 
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would be preferable, in the context of condenser microphone design, to eliminate such 
effects as much as possible. Nevertheless, it  may often be of value to have (equations 
(67)-(69)) simply in order to determine when such effects become important. 

This work was supported by the DOE through the centre for Educational Affairs. 
I would like to thank P. R. Roach for introducing me to this problem. 
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